





## Asymmetric synthesis of the 4-hydroxymethyl-2-oxazolidinone from the serinol derivative and chloroformates

Shigeo Sugiyama, Shoko Watanabe and Keitaro Ishii \*

Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan

Received 6 July 1999; revised 6 August 1999; accepted 12 August 1999

## **Abstract**

Asymmetric desymmetrization of  $2-[(\alpha R)-\alpha$ -methylbenzyl]amino-1,3-propanediol (1) with 2-chloroethyl chloroformate and DBU at room temperature gave optically active (4S)-4-hydroxymethyl-N-[( $\alpha R$ )- $\alpha$ -methylbenzyl]-2-oxazolidinone [(4S)-2] (up to 94% de). This reaction involves kinetic resolution and [1,3]-alkoxyacyl migration of 2-chloroethyl (2S)- and 2-chloroethyl (2R)-3-hydroxy-2-[( $\alpha R$ )- $\alpha$ -methylbenzyl]aminopropyl carbonates [(2S)-4 and (2R)-4]. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: diastereoselection; oxazolidinones; amino alcohols; cyclization.

Asymmetric desymmetrization of prochiral 2-substituted-1,3-propanediols is successfully achieved using enzymes. For example, 2-methyl-1,3-propanediol and its diester are acylated and hydrolyzed to their corresponding optically active monoesters by *Pseudomonas fluorescens* lipase. Other 2-substituted-1,3-propanediols are also converted to optically active alcohols by chemical methods. In these reactions, however, serinol derivatives have not been investigated. On the other hand, optically active 4-hydroxymethyl-2-oxazolidinone derivatives are used as important intermediates for organic syntheses. The oxazolidinones are prepared from optically active serine, and mono-O-substituted serinol, and glycidol. In these cases the chirality of the 4-position of the oxazolidinone ring is derived from the chirality of the starting material. Here we describe a new methodology for the asymmetric synthesis of 4-hydroxymethyl-2-oxazolidinones from a serinol derivative involving asymmetric desymmetrization. We focused on a starting material, prochiral serinol 1, possessing a chiral  $\alpha$ -methylbenzyl group on its nitrogen. Serinol 1 would react with chloroformates, and optically active oxazolidinones (4S)-2 or (4R)-2 would be given by diastereoselective intramolecular cyclization (Scheme 1).

Serinol 1 was prepared by amination of diethyl bromomalonate with (R)-(+)- $\alpha$ -methylbenzylamine, following reduction of the ester groups with sodium borohydride<sup>5</sup> (Scheme 2). Serinol 1 was treated with alkyl, haloalkyl, benzyl, or phenyl chloroformates in CDCl<sub>3</sub> in the presence of Py- $d_5$  (base-1) and triphenylmethane as an internal standard for <sup>1</sup>H NMR analysis. After standing for 24 h at room

<sup>\*</sup> Corresponding author. Tel/fax: +81 424 95 8783; e-mail: ishiikei@my-pharm.ac.jp

Scheme 1.

temperature, the mixture was treated with DBU (base-2). The resulting mixture was kept at room temperature for 48 h, affording (4S)-2 and (4R)-2. The results are summarized in Table 1. The absolute configurations of (4S)-2 and (4R)-2 were determined by comparison with the spectral data of the samples obtained from (R)-(+)- $\alpha$ -methylbenzyl isocyanate and (S)-(-)-glycidol and from the isocyanate and (R)-(+)-glycidol, respectively.<sup>6,7</sup>

Scheme 2.

For the synthesis of the oxazolidinones from 1, chloroalkyl and benzyl chloroformates were good reagents (entries 3, 5 and 6). Methyl and ethyl chloroformates were less reactive among them (entries 1 and 2). In these reactions, the major product was (4S)-2 and the diastereomeric excess was high (92–84% de) except 2,2,2,1-tetrachloroethyl chloroformate (8% de, entry 5). DBU was needed for cyclization to give the oxazolidinone ring. Pyridine and triethylamine did not work at all for cyclization. In both yield and diastereoselectivity, 2-chloroethyl chloroformate was the most effective for the purpose.

Table 1 Synthesis of 2-oxazolidinones 2 from 1 with chloroformates  $(ClCO_2R)^a$ 

Py-d<sub>5</sub> (1 equiv.), Ph<sub>3</sub>CH <sup>b</sup>(0.25 equiv.),

CDCl<sub>3</sub> (0.04 mol/L), rt, 24 h.

1 + CICO<sub>2</sub>R

(1.0 equiv.) then DBU (3 equiv.), rt, 48 h

| Entry | Chloroformates R                 | Oxazolidinones 2       |                    |  |
|-------|----------------------------------|------------------------|--------------------|--|
|       |                                  | Yield (%) <sup>c</sup> | (4S): (4R) (de, %) |  |
| 1     | CH <sub>3</sub>                  | 47                     | 96 : 4 (92)        |  |
| 2     | CH <sub>2</sub> CH <sub>3</sub>  | 18                     | 94 : 6 (88)        |  |
| 3     | CH₂CH₂Cl                         | 62                     | 96 : 4 (92)        |  |
| 4     | CH <sub>2</sub> CCl <sub>3</sub> | 51                     | 93 : 7 (86)        |  |
| 5     | CHCICCl <sub>3</sub>             | 60                     | 54 : 46 (8)        |  |
| 6     | CH₂Ph                            | 59                     | 96 : 4 (92)        |  |
| 7     | Ph                               | 51                     | 92 : 8 (84)        |  |

<sup>a</sup> The reactions were carried out in NMR tubes. <sup>b</sup> Internal standard. <sup>c</sup> The yields were calibrated with the internal standard by <sup>1</sup>H-NMR integration. Characteristic signals (CDCl<sub>3</sub>):  $\delta[(4S)-2] = 5.30$  ppm,  $\delta[(4R)-2] = 5.15$  ppm,  $\delta(Ph_3CH) = 5.55$  ppm. <sup>d</sup> The ratio of the products was obtained by the comparison of their HPLC area. HPLC conditions, column; LiChroCART/LiChrospher Si 60, 5 μm (Merck), solvent; *n*-hexane: AcOEt = 3:7, flow rate; 0.5 mL/min, detection; UV (254 nm). Retention time, (4S)-2; 35.0 min, (4R)-2; 33.0 min. The ratio of (4S)-2 and (4R)-2 was estimated with their area. The ratio of the HPLC area for (4S)-2 and (4R)-2 is in good agreement with that of the <sup>1</sup>H-NMR integration.

Table 2 Synthesis of (4S)-2 and (4R)-2 with 2-chloroethyl chloroformate<sup>a</sup>

| Entry          | Chloro-             | Base-1                        |                 | Base-2       | Oxazolidinones 2          |                                    |
|----------------|---------------------|-------------------------------|-----------------|--------------|---------------------------|------------------------------------|
|                | formate<br>(equiv.) | Py-d <sub>5</sub><br>(equiv.) | DBU<br>(equiv.) | DBU (equiv.) | Yield<br>(%) <sup>c</sup> | (4S): (4R)<br>(de, %) <sup>d</sup> |
| 1 <sup>e</sup> | 1                   | 1                             | -               | 3            | 62                        | 96 : 4 (92)                        |
| 2              | 1.2                 | 1.2                           | -               | 3            | 45                        | 95 : 5 (90)                        |
| 3              | 1.4                 | 1.4                           | -               | 3            | 44                        | 95 : 5 (90)                        |
| 4              | 1.6                 | 1.6                           | -               | 3            | 44                        | 95 : 5 (90)                        |
| 5              | 1                   | 1                             | -               | 1            | 0                         | -                                  |
| 6              | 1                   | 1                             |                 | 2            | 56                        | 96 : 4 (92)                        |
| 7              | 1                   | -                             | -               | 3            | 61                        | 89:11 (78)                         |
| 8              | 1                   | 1                             | 3               | -            | 43                        | 72 : 28 (44)                       |
| 9              | 1                   | -                             | 1               | 2            | 52                        | 96 : 4 (92)                        |
| 10             | 1                   | -                             | 2               | 1            | 34                        | 81 : 19 (62)                       |
| 11             | 1                   | -                             | 3               | -            | 37                        | 77 : 23 (54)                       |

<sup>&</sup>lt;sup>a-d</sup> See the corresponding footnotes in Table 1. Data taken from Table 1.

We studied the reactions of 1 containing various concentrations of 2-chloroethyl chloroformate and bases (Py- $d_5$  and DBU). The results are summarized in Table 2. When we used more than 1 equivalent of the chloroformate, the yield of oxazolidinones decreased, whereas the yield of biscarbonate 3 increased (11, 12, 16 and 35% in entries 1–4, respectively). The yield was not changed without pyridine; however, diastereomeric excess was found to be lower (entries 1 and 7). Use of less than 3 equivalents of DBU as base-2 (entries 5 and 6) and use of DBU as base-1 instead of pyridine (entries 9–11) gave poor yields and selectivities.

The best reaction conditions are shown in entry 1 on Table 2. According to the conditions, the preparative synthesis of (4S)-2 from 1 (25.6 mmol) was performed. The best yield (68%) and diastereo-selectivity (94% de, HPLC analysis) for (4S)-2 were achieved.<sup>8</sup> The optical pure (4S)-2 was prepared by recrystallization from *tert*-butyl methyl ether. This new procedure will be a convenient and efficient method for preparation of optically active 4-hydroxymethyl-2-oxazolidinones.

In order to clear the reaction paths, we tried to trap the intermediate of this one-pot reaction. A diastereomixture of monocarbonates (2S)-4 and (2R)-4 (1:1) could be obtained (40%) from a reaction of 1, 2-chloroethyl chloroformate and pyridine in methylene chloride (Scheme 3). The mixture of (2S)-4 and (2R)-4 was treated with DBU in CDCl<sub>3</sub> at room temperature affording (4S)-2 in excellent yield (97%) and in high diastereoselectivity (94%) de). The selectivity was identical with that of the one-pot reaction from 1. These facts indicate that the cyclization to (4S)-2 involves kinetic resolution of monocarbonate (2S)-4 and (2R)-4 accompanied with [1,3]-alkoxyacyl migration from (2R)-4 to (2S)-4.

Scheme 3.

## References

- 1. For a review, see: Banfi, L.; Guanti, G. Synthesis 1993, 1029-1056.
- (a) For a review, see: Harada, T.; Oku, A. Synlett 1994, 95-104.
   (b) Maezaki, N.; Shogaki, T.; Imamura, T.; Tokuno, K.; Ohkubo, K.; Tanaka, T.; Iwata, C. Chem. Pharm. Bull. 1998, 46, 837-841.
   (c) Kitagawa, O.; Hanano, T.; Tanabe, K.; Shiro, M.; Taguchi, T. J. Chem. Soc., Chem. Commun. 1992, 1005-1007.
- (a) Sibi, M. P.; Renhowe, P. A. Tetrahedron Lett. 1990, 31, 7407-7410.
   (b) Sibi, M. P.; Li, B. Tetrahedron Lett. 1992, 33, 4115-4118.
   (c) Sibi, M. P.; Christensen, J. W.; Li, B.; Renhowe, P. A. J. Org. Chem. 1992, 57, 4329-4330.
   (d) Sibi, M. P.; Rutherford, D.; Sharma, R. J. Chem. Soc., Perkin Trans. 1 1994, 1675-1678.
   (e) Sibi, M. P.; Harris, B. J.; Shay, J. J.; Hajra, S. Tetrahedron 1998, 54, 7221-7228.
   (f) Katsumura, S.; Yamamoto, N.; Morita, M.; Han, Q. Tetrahedron: Asymmetry 1994, 5, 161-164.
   (g) Iwama, S.; Katsumura, S. Bull. Chem. Soc. Jpn. 1994, 67, 3363-3365.
   (h) Katsumura, S.; Yamamoto, N.; Fukuda, E.; Iwama, S. Chem. Lett. 1995, 393-394.
   (i) Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 5418-5424.
- 4. Choi, S.-K.; Lee, W.-K. Heterocycles 1998, 48, 1917-1921.
- 5. Soai, K.; Oyamada, H.; Takase, M. Bull. Chem. Soc. Jap. 1984, 57, 2327-2328.
- 6. Katsumura, S.; Kondo, A.; Han, Q. Chemistry Lett. 1991, 1245-1248.
- 7. Recently antipodes of these oxazolidinones were synthesized from optically active aziridines.<sup>4</sup>
- 8. The procedure is as follows. Serinol 1 (5.00 g, 25.6 mmol) was dissolved in methylene chloride (640 mL, 0.04 mol/L) at 40°C (bath temperature). Pyridine (2.16 g, 25.6 mmol) was added, and then 2-chloroethyl chloroformate (3.66 g, 25.6 mmol) was added by one shot to the mixture at room temperature. After being stirred for 24 h at room temperature, the mixture was cooled to 1°C (internal temperature) with an ice bath and treated with DBU (11.85 g, 76.8 mmol). The resulting mixture was stirred for 4 h with warming to room temperature. The reaction mixture was washed twice with 5% HCl aq. (60 mL) and once with water (60 mL). It was then dried, filtered and concentrated in vacuo to give a yellow oil (5.92 g) which was chromatographed on silica gel (hexane:AcOEt 1:2, column 7 cm \$\phi \times 22\$ cm) to afford biscarbonate 3 (503 mg, 5%) as a colorless oil and a mixture of oxazolidinones (4S)-2 and (4R)-2 (3.85 g, 68% yield, 97: 3, 94% de) as colorless crystals. The crystals (3.84 g) were recrystallized from tert-butyl methyl ether (30 mL) to give pure (4S)-2 as colorless plates (2.19 g).